Probabilistic Neural Network for Predicting the Stability numbers of Breakwater Armor Blocks

نویسندگان

  • Doo Kie Kim
  • Dong Hyawn Kim
  • Seong Kyu Chang
  • Sang Kil Chang
چکیده

Probabilistic Neural Network for Predicting the Stability numbers of Breakwater Armor Blocks Doo Kie Kim1, Dong Hyawn Kim2, Seong Kyu Chang1 and Sang Kil Chang1 Summary The stability numbers determining the Armor units are very important to design breakwaters, because armor units are designed for defending breakwaters from repeated wave loads. This study presents a probabilistic neural network (PNN) for predicting the stability number of armor blocks of breakwaters. PNN used the experimental data of van der Meer as train and test data. The estimated results of PNN were compared with those of empirical formula and previous artificial neural network (ANN) model. The comparison results showed the efficiency of the proposed method in the prediction of the stability numbers in spite of data incompleteness and incoherence. The proposed method was proved to an effective tool for designers of rubble mound breakwaters to support their decision process and to improve design efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reliability analysis of rubble-mound breakwaters against the failure due to the armor layer instability based on the fuzzy random variables theory: A case study of Anzali Port breakwater

Breakwaters are among the most frequently-used coastal protective structures and their stability is vital to avoid turbulence at the ports. The main purpose of the present research is to use the theory of fuzzy random variables and the second-order reliability method (SORM) to study the reliability of a rubble-mound breakwater against the failure due to the armor layer instability. The limit-st...

متن کامل

Estimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran

In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...

متن کامل

DIFFERENT NEURAL NETWORKS AND MODAL TREE METHOD FOR PREDICTING ULTIMATE BEARING CAPACITY OF PILES

The prediction of the ultimate bearing capacity of the pile under axial load is one of the important issues for many researches in the field of geotechnical engineering. In recent years, the use of computational intelligence techniques such as different methods of artificial neural network has been developed in terms of physical and numerical modeling aspects. In this study, a database of 100 p...

متن کامل

Application of artificial neural network (ANN) for the prediction of water treatment plant influent characteristics

Application of a reliable forecasting model for any water treatment plant (WTP) is essential in order to provide a tool for predicting influent water quality and to form a basis for controlling the operation of the process. This would minimize the operation and analysis costs, and assess the stability of WTP performances. This paper focuses on applying an artificial neural network (ANN) approac...

متن کامل

Designing of a New Transformer Ground Differential Relay Based on Probabilistic Neural Network

Low- impedance transformer ground differential relay is a part of power transformer protection system that is employed for detecting the internal earth faults. This is a fast and sensitive relay, but during some external faults and inrush current conditions, may be exposed to maloperation due to current transformer (CT) saturation. In this paper, a new intelligent transformer ground differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007